Shallow Water Measurements Using a Single Green Laser Corrected by Building a Near Water Surface Penetration Model

نویسندگان

  • Jianhu Zhao
  • Xinglei Zhao
  • Hongmei Zhang
  • Fengnian Zhou
چکیده

To reduce the size and cost of an integrated infrared (IR) and green airborne LiDAR bathymetry (ALB) system, and improve the accuracy of the green ALB system, this study proposes a method to accurately determine water surface and water bottom heights using a single green laser corrected by the near water surface penetration (NWSP) model. The factors that influence the NWSP of green laser are likewise analyzed. In addition, an NWSP modeling method is proposed to determine the relationship between NWSP and the suspended sediment concentration (SSC) of the surface layer, scanning angle of a laser beam and sensor height. The water surface and water bottom height models are deduced by considering NWSP and using only green laser based on the measurement principle of the IR laser and green laser, as well as employing the relationship between NWSP and the time delay of the surface return of the green laser. Lastly, these methods and models are applied to a practical ALB measurement. Standard deviations of 3.0, 5.3, and 1.3 cm are obtained by the NWSP, water-surface height, and water-bottom height models, respectively. Several beneficial conclusions and recommendations are drawn through the experiments and discussions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

3D Numerical Simulation of the Separated Turbulent Shallow Flow around a Single Side Obstacle

In this paper, the performance of Reynolds Averaged Navier Stokes (RANS) simulations was evaluated to predict the flow structure developed by the presence of a sidewall obstruction in a uniform open-channel shallow flow. The study of these flow structures is important because they present in several real world configurations, such as groynes in rivers, where the erosion processes, mass transpor...

متن کامل

Improved Model for Depth Bias Correction in Airborne LiDAR Bathymetry Systems

Airborne LiDAR bathymetry (ALB) is efficient and cost effective in obtaining shallow water topography, but often produces a low-accuracy sounding solution due to the effects of ALB measurements and ocean hydrological parameters. In bathymetry estimates, peak shifting of the green bottom return caused by pulse stretching induces depth bias, which is the largest error source in ALB depth measurem...

متن کامل

Using Weibull probability distribution to calibrate prevailing wind applying in oil spill simulation

In the Persian Gulf, the major source of oil pollution is related to the transportation of tankers, offshore production and discharges by coastal refineries. The water dynamical field has been obtained using a new hydrodynamic model. Local wind is recognized as the principal driving force combining to the water dynamic field to determine oil drift on the sea surface. The Weibull probability dis...

متن کامل

Comparison of surface salinity of Persian Gulf water using field data and FVCOM numerical model

This paper investigates and estimates the surface salinity changes of the Persian Gulf using the FVCOM numerical model. Sea level salinity (SSS) is one of the important parameters in oceanographic studies. The Persian Gulf is a semi-closed and shallow sea, which is high in the Persian Gulf due to its low rainfall, salinity and water density. One of the limitations of this region is the lack of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017